

# **Cypress Building**

**Brookline High School** 

## **Design Development Energy Analysis Report**

**Revision-2** 

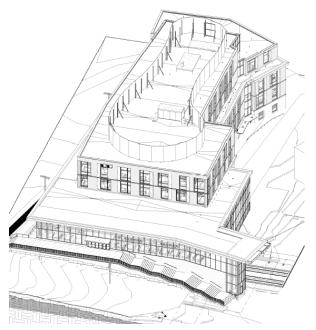



Image ©: William Rawn Associates, Architects, Inc.

Prepared For:

#### William Rawn Associates, Architects, Inc.

10 Post Office Square, Suite 1010 Boston, MA 02109 617.423.3470 Town of Brookline Brookline High School Brookline, MA 02445

Prepared By:

The Green Engineer, Inc. 23 Bradford Street, 1st Floor

Concord MA 01742 978.369.8978

March 21, 2019



## Table of Contents

| Exec | putive Summary                                          | 3  |
|------|---------------------------------------------------------|----|
| I.   | Description of Alternatives                             | 4  |
| II.  | Energy Conservation Measures                            | 4  |
| III. | Simulation Results                                      | 5  |
| a.   | Baseline Schedule – Extended Occupancy                  | 5  |
| b.   | Alternate Schedule – Standard School Hours Only         | 6  |
| IV.  | Discussion of Results:                                  | 8  |
| V.   | Modeling Methodology                                    | 9  |
| VI.  | LEEDv4 Pilot ACP: Alternative Energy Performance Metric | 10 |
| APP  | ENDIX-A: MODEL INPUT SUMMARY                            | 12 |
| APP  | ENDIX-B: PHOTOVOLTAIC ANALYSIS                          | 16 |



## **Executive Summary**

The Cypress Building project consists of a five-story (lower level + 4 floors) new 116,534 SF academic building consisting of classrooms, library, cafeteria, office spaces, and support spaces at the Brookline High School campus in Brookline, MA. The project scope also includes back-of-house and electrical/mechanical support spaces at the lower level.

The Green Engineer (TGE) performed building performance analysis to compare the design with a LEED baseline, modeled in accordance with ASHRAE 90.1-2010, Appendix G. The results of the modeling indicate that the as-designed building is expected to show total energy-cost savings of **35.8%**, excluding savings from on-site PV, compared to the Baseline. With savings from on-site PV the cost savings are **39.5%** and EUI for the design is **29.8 kBtu/SF-yr**. The percentage annual site and source energy savings are estimated at **42.9%** and **37.1%**, respectively. Additionally, the greenhouse gas (GHG) emissions for the proposed design are estimated at **232** MTCO2e, an approximately **39.7%** reduction from the Baseline emissions. Refer to Figure-1 below.

Standard LEEDv4 compliance path uses energy cost metrics for credit achievement. This project has a potential to earn **14 LEED** points based on annual energy cost savings. Based on the LEED v4 pilot alternative compliance path (ACP)<sup>1</sup>, that allows using alternate metrics such as source energy, GHG emissions, etc., for documenting performance improvement, the estimated savings for the project are **38.42%** which is equivalent to **15 LEED** points. Summaries of these results are presented in the following sections.

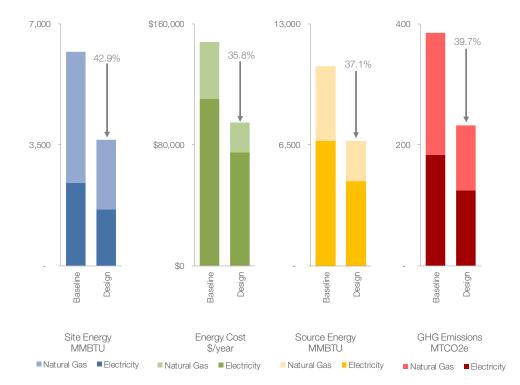



Figure 1: Baseline and Design Case Energy Use, Energy Cost, Source Energy and GHG Emissions Comparison

<sup>&</sup>lt;sup>1</sup> Source: <u>LEEDv4 BD+C Alternate Energy Performance Metric</u>



### I. Description of Alternatives

**ASHRAE 90.1-2010 Baseline**: The building as-designed, except that the envelope constructions, mechanical equipment, and lighting meet the minimum requirements of ASHRAE 90.1-2010.

**Design Case**: The building as-designed. The design inputs are based on the Design Development Pricing Set drawings and documents, and information provided by the design team.

Every effort has been made to use reasonable assumptions for building components and systems where details were not available.

**Design Case-Alternate Options**: The team wanted to investigate the impact extended hours of operation (evenings, Saturdays and summer) for Floors 1 & 2 will have on the annual energy use. A version of the model was run when the school is only used for academic purposes (Monday-Friday, 8:00 a.m. – 3 p.m., all other dates/times-including summer: closed). Details for occupancy and hours of operation included in the energy model are provided in Section-V of this report.

Simulation results for the extended academic schedule as well as the alternate schedule (standard school hours) are provided in Section-III of this report.

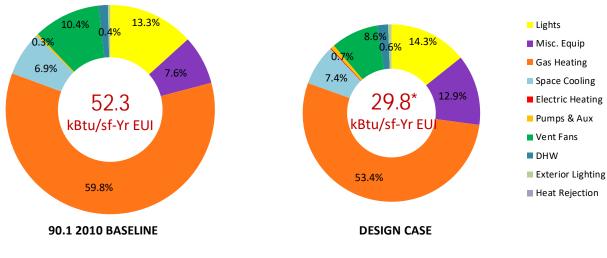
Please refer to <u>Appendix-A</u> for detailed model inputs.

#### II. Energy Conservation Measures

The following ECM's have been identified for the project:

- Improved envelope assemblies and fenestration
- Reduced interior lighting through use of high-efficiency LED fixtures
- High efficiency VAV units with energy recovery effectiveness better than ASHRAE 90.1 requirements
- The design includes partial cooling for all areas, except the offices, specialty spaces, library, White Box, and admin areas. This results in a lower overall energy use for the project.
- Supply air temperature reset
- Perimeter finned tube radiators (FTR's) and radiant panels with hot water heating. Perimeter FTR's meet space loads during unoccupied periods eliminating the need for RTUs to cycle on at night and unoccupied periods. RTU's are modeled to remain off during unoccupied hours.
- High efficiency condensing boilers and optimized hot water loop parameters
- High efficiency air-cooled chiller and optimized chilled water loop parameters
- High efficiency VRF-HPs in spaces with full cooling
- On-site renewables: roof top photo-voltaic (PV)

#### III. Simulation Results


### a. Baseline Schedule – Extended Occupancy

Following are the simulation results obtained from the energy model iterations. The annual energy use and cost savings for the proposed design are based on energy efficiency strategies incorporated in the design to reduce the energy consumption in the building. The following tables summarize energy use and cost results for the Baseline and the Proposed Design based on <u>extended hours of operation</u>. Also included are the estimated source energy savings and GHG emissions reduction for the Design compared to the Baseline.

|               | Site Energy Use Savings (MMBtu/Yr) |             |                |                  |                     |                |           |      |                      |                   |                    | EUI   |           |              |
|---------------|------------------------------------|-------------|----------------|------------------|---------------------|----------------|-----------|------|----------------------|-------------------|--------------------|-------|-----------|--------------|
| Description   | Lights                             | Misc. Equip | Gas<br>Heating | Space<br>Cooling | Electric<br>Heating | Pumps &<br>Aux | Vent Fans | DHW  | Exterior<br>Lighting | Heat<br>Rejection | Solar PV<br>Offset | Total | % Savings | (kBtu/SF-yr) |
| LEED Baseline | 821.1                              | 469.7       | 3694.0         | 426.9            | 0.0                 | 18.9           | 640.8     | 89.0 | 21.8                 | 0                 | -                  | 6,182 | -         | 52.3         |
| Design Case   | 520.1                              | 469.7       | 1946.0         | 270.3            | 6.2                 | 25.0           | 314.4     | 73.4 | 21.8                 | 0                 | -119               | 3,528 | 42.9%     | 29.8         |

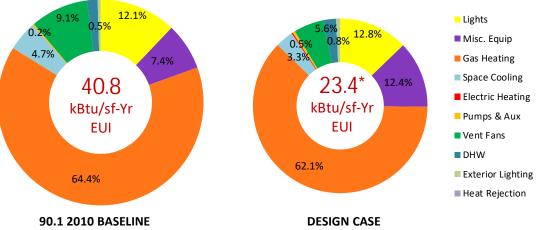
| Energy Use, GHG Reduction and Cost Summary |                            |                        |             |  |  |  |  |  |
|--------------------------------------------|----------------------------|------------------------|-------------|--|--|--|--|--|
| Description                                |                            | LEED Baseline          | Design Case |  |  |  |  |  |
| Annual Site Energy Summary                 |                            |                        |             |  |  |  |  |  |
| Electricity                                | kWh                        | 702,966                | 476,970     |  |  |  |  |  |
| Natural Gas                                | MMBtu                      | 3,783                  | 2,019       |  |  |  |  |  |
| ^Total Site Energy use                     | MMBtu                      | 6,182                  | 3,647       |  |  |  |  |  |
| Annual Energy Cost Reduction               |                            |                        |             |  |  |  |  |  |
| Electricity                                | \$/year                    | \$110,366              | \$74,884    |  |  |  |  |  |
| Natural Gas                                | \$/year                    | \$37,414               | \$19,972    |  |  |  |  |  |
| ^Total Energy Cost                         | \$/year                    | \$147,779              | \$94,856    |  |  |  |  |  |
|                                            | Site Ener                  | rgy Cost Savings (%)   | 35.8%       |  |  |  |  |  |
| Total Energy Cost with On-site PV          | \$/year                    | \$147,779              | \$89,391    |  |  |  |  |  |
|                                            | Site Energy Cost Savir     | ngs (including PV) (%) | 39.5%       |  |  |  |  |  |
| Annual Source Energy Reduction             |                            |                        |             |  |  |  |  |  |
| Total Source Energy use                    | MMBtu                      | 10,690                 | 6,678       |  |  |  |  |  |
|                                            | Source                     | e Energy Savings (%)   | 37.5%       |  |  |  |  |  |
| Green House Gas (GHG) Reduction            |                            |                        |             |  |  |  |  |  |
| Total GHG Emissions                        | MTCO2e                     | 384.7                  | 232.0       |  |  |  |  |  |
|                                            |                            | GHG Reduction(%)       | 39.7%       |  |  |  |  |  |
| ^Estimated Annual Energy Use and Cost      | excluding savings from on- | -site PV               |             |  |  |  |  |  |





#### SITE ENERGY CONSUMPTION BY END-USE (EXTENDED OCCUPANCY)

\*Design Case EUI includes energy use savings from On-Site PV


### b. Alternate Schedule - Standard School Hours Only

The following tables summarize energy use and cost results for the Baseline and the Proposed Design with standard hours of operation i.e. Monday - Friday 8a.m. – 3p.m. The school is assumed to remain closed on weekends and during summer / winter breaks. Also included are the estimated source energy savings and GHG emissions reduction for the Design compared to the Baseline.

| Site Energy Use Savings (MMBtu/Yr) - Alternate Schedule |        |             |                |                  |                     |                |           |      |                      |                   | EUI                |         |           |              |
|---------------------------------------------------------|--------|-------------|----------------|------------------|---------------------|----------------|-----------|------|----------------------|-------------------|--------------------|---------|-----------|--------------|
| Description                                             | Lights | Misc. Equip | Gas<br>Heating | Space<br>Cooling | Electric<br>Heating | Pumps &<br>Aux | Vent Fans | DHW  | Exterior<br>Lighting | Heat<br>Rejection | Solar PV<br>Offset | Total   | % Savings | (kBtu/SF-yr) |
| LEED Baseline                                           | 584.0  | 356.9       | 3106.0         | 226.3            | 0.0                 | 11.6           | 438.2     | 81.2 | 21.8                 | 0                 |                    | 4,826.0 | -         | 40.8         |
| Design Case                                             | 369.7  | 356.9       | 1795.0         | 96.1             | 6.3                 | 13.4           | 161.8     | 67.4 | 21.8                 | 0                 | -119               | 2,769.4 | 42.6%     | 23.4         |

| Energy Use, GHG Reduction and Cost Summary - Alternate Schedule |                                 |                        |             |  |  |  |  |  |
|-----------------------------------------------------------------|---------------------------------|------------------------|-------------|--|--|--|--|--|
| Descriptio                                                      | n                               | LEED Baseline          | Design Case |  |  |  |  |  |
| Annual Site Energy Summary                                      |                                 |                        |             |  |  |  |  |  |
| Electricity                                                     | kWh                             | 480,168                | 300,618     |  |  |  |  |  |
| Natural Gas                                                     | MMBtu                           | 3,187                  | 1,862       |  |  |  |  |  |
| otal Site Energy use MMBtu                                      |                                 | 4,826                  | 2,888       |  |  |  |  |  |
| Annual Energy Cost Reduction                                    |                                 |                        |             |  |  |  |  |  |
| Electricity                                                     | \$/year                         | \$75,386               | \$47,197    |  |  |  |  |  |
| Natural Gas                                                     | \$/year                         | \$31,521               | \$18,419    |  |  |  |  |  |
| ^Total Energy Cost                                              | \$/year                         | \$106,908              | \$65,616    |  |  |  |  |  |
|                                                                 | Site Ener                       | rgy Cost Savings (%)   | 38.6%       |  |  |  |  |  |
| Total Energy Cost with on-site PV                               | \$/year                         | \$106,908              | \$60,151    |  |  |  |  |  |
|                                                                 | Site Energy Cost Savin          | igs (including PV) (%) | 43.7%       |  |  |  |  |  |
| Annual Source Energy Reduction                                  |                                 |                        |             |  |  |  |  |  |
| Total Source Energy use                                         | MMBtu                           | 7,935                  | 4,828       |  |  |  |  |  |
|                                                                 | Source                          | e Energy Savings (%)   | 39.2%       |  |  |  |  |  |
| Green House Gas (GHG) Reduction                                 | Green House Gas (GHG) Reduction |                        |             |  |  |  |  |  |
| Total GHG Emissions                                             | MTCO2e                          | 294.8                  | 177.5       |  |  |  |  |  |
|                                                                 |                                 | GHG Reduction(%)       | 39.8%       |  |  |  |  |  |
| ^Estimated Annual Energy Use and                                | Cost excluding savings fro      | om on-site PV          |             |  |  |  |  |  |

#### SITE ENERGY CONSUMPTION BY END-USE (REDUCED OCCUPANCY)



#### IV. Discussion of Results:

- The design includes several energy efficiency measures that provide annual energy use savings for the project. Interior lighting, space heating, space cooling, and fan energy are the largest end-uses contributing towards overall savings for the project.
- The Site EUI for the design, based on the current model inputs, is estimated at 29.8 kBtu/sf-yr. The GHG emissions for the Proposed Design are estimated at 232 MTCO2e, an approximately 39.7% reduction from the Baseline GHG emissions estimated at 384 MTCO2e.

This preliminary analysis shows that pursuing the pilot LEED ACP and using alternate performance metric such as source energy, GHG emissions, etc., to document savings can potentially provide up to **15 LEED** points for this project. *Note that achieving additional credit using this ACP requires project teams to calculate and document all required energy metrics and is subject to approval by the GBCI.* 

- The design includes partial cooling for all areas except the faculty spaces, offices, library, White Box and admin spaces that have full air-conditioning. This results in a lower overall energy use for the project.
- Alternate Building Operation Schedule: The iteration of the energy model in which hours of operation are limited to academic hours only shows an EUI of 23.4 kBtu/SF-yr compared to 29.8 kBtu/SF-year for the anticipated extended operating hours.
- The design will include roof top PV to provide on-site renewable energy. The available roof area for PV panels is currently estimated at 3,065 SF. Based on assumptions outlined in Appendix-B of this report, a 27 pkW PV system can be installed in the available roof area with annual production potential of 34,873 kWh/yr and an annual energy value of \$5,475 for on-site electricity.



### V. Modeling Methodology

This phase of the energy modeling, based on the Design Development pricing set dated 30<sup>th</sup> November 2018, and information provided by the design team, evaluates the performance of the proposed design against an ASHRAE 90.1-2010 compliant Baseline building for LEEDv4. The modeling was performed in accordance with ASHRAE Standard 90.1-2010, Appendix-G guidelines.

The purpose of presenting this information is to provide a gauge for the project in terms of energy performance and an opportunity for the design team to review the energy model assumptions for accuracy. The overall energy savings and estimated annual energy consumption for the project is likely to change as the design gets further refined, and the energy model inputs are reviewed and finalized.

The annual energy cost estimates are based on energy modeling results, using eQUEST version 3.65 modeling software. The eQUEST software uses DOE-2 calculation engine to estimate annual energy consumption by simulating a year of building operations based on a typical weather year and user inputs.

The geometry of the building is based on the AutoCAD floor plans, except that window positions are simplified based on a percentage glazing in each zone and exposure. It is important to keep in mind the limitations of energy models when reviewing this information. The results are based on the current design assumptions and utility rates described within this report.

Further, energy consumption is highly dependent on weather conditions and the actual operating schedule of the building. The numbers generated will not necessarily be an accurate projection of actual energy costs but should serve as an accurate comparison between alternatives.

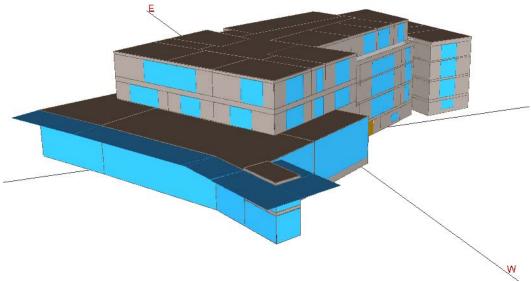



Image 1: Cypress Building - Energy Model 3D View



#### Occupancy and building operation:

The estimated annual energy use is based on the following hours of operation:

Academic School Year: Building in Full Use

School Day: 8am – 3pm After Hours: 3pm – 10pm (floors 1 & 2 only) Saturdays: Partial Use between 9am & 3pm (floors 1 & 2 only) Sundays: Closed Holidays, Winter Break, Spring Break: Closed

#### Summer

Building in Full Use: School Day: 8am – 3pm Saturdays: Partial Use between 9am & 3pm (floors 1 & 2 only)

The annual energy use for the following <u>Alternate Schedule</u> has also been included in the result summary.

Academic School Year Only: Building in Full Use School Day: 8am – 3pm All other dates/times (including summer): Closed

#### **Utility Rates:**

The following EIA State Average Rates for electricity and natural gas have been used for estimating annual energy cost savings for the project:

- Electricity: \$ 0.157 /kWh (2017 EIA Average for MA)
- Gas: \$9.89 /MBTU (2017 EIA Average for MA)

#### VI. LEEDv4 Pilot ACP: Alternative Energy Performance Metric

Under the LEED v4 Rating System project teams may use the pilot alternative compliance path (ACP) for documenting savings under the EA Optimize Energy Performance Credit. The intent of this ACP is to allow project teams to use performance metrics other than cost for documenting performance improvement. The ACP requires project teams to calculate and report a metric from each of the required categories:

- Site Energy Cost
- Source Energy
- Greenhouse gas emissions
- Time Dependent Valuation (TDV) Energy (if available)

The average percent savings of the two highest-performing metrics, using equal weighting, is then used to determine percentage energy savings for the project.

For this project, the average percent savings for the two highest-performing metrics i.e. greenhouse gas emission reduction and source energy use reduction are estimated at **38.6%** which earns the project **15 LEED** credit points.



Note that the following Energy Star Portfolio Manager GHG emissions factors were used for this analysis:

- Electricity: 0.0767 MTCo2e / MMBTU for New England
- Natural gas: 0.05311 MT Co2e /MMBtu (US Average)



## APPENDIX-A: MODEL INPUT SUMMARY

The envelope, internal load assumptions and HVAC system inputs in the energy model are based on the drawings and documents available to us and inputs from the design team.

| Brookline Cypress Building: Design Development Model Inputs |                                                                                                                                                |                                                                                                                                                        |  |  |  |  |  |  |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Project Area                                                | 116,534 SF                                                                                                                                     |                                                                                                                                                        |  |  |  |  |  |  |
| Building Envelope                                           | Baseline Case<br>(ASHRAE 90.1 2010)                                                                                                            | Design Case                                                                                                                                            |  |  |  |  |  |  |
| Roofs                                                       | ASHRAE 90.1 2010, Table 5.5-5 (CZ 5A):<br>Insulation entirely above Deck. R-20 c.i.                                                            | Insulation entirely above Deck: R-45.6 c.i.<br>(6" min Polyiso insulation @R 5.7/inch)                                                                 |  |  |  |  |  |  |
|                                                             | Assembly U-Value: 0.048                                                                                                                        | Assembly U-Value: 0.028                                                                                                                                |  |  |  |  |  |  |
| Walls - Above Grade                                         | ASHRAE 90.1 2010, Table 5.5-6 (CZ 5A): Steel-<br>framed Construction. R-13.0 + 7.5 c.i.                                                        | Brick Veneer Wall: R-27.62 Effective R-Value<br>Assembly U-0.035                                                                                       |  |  |  |  |  |  |
|                                                             | Assembly U-Value: 0.064                                                                                                                        | Spandrel<br>Assembly U-0.45                                                                                                                            |  |  |  |  |  |  |
| Slab on Grade                                               | Unheated, 6" slab on grade floor F-0.73                                                                                                        | Modeled same as Baseline                                                                                                                               |  |  |  |  |  |  |
| Fenestration and Shading                                    | Baseline Case<br>(ASHRAE 90.1 2010)                                                                                                            | Design Case                                                                                                                                            |  |  |  |  |  |  |
| Vertical Glazing Description                                | Curtain Walls and Punched Windows                                                                                                              | Curtain Walls and Punched Windows                                                                                                                      |  |  |  |  |  |  |
| Vertical Glazing U-factor                                   | ASHRAE 90.1 2010, Table 5.5-5<br>Metal Framing (Curtain Wall):<br>Assembly U-value: 0.45<br>Metal Framing (Punched):<br>Assembly U-Value: 0.55 | Solarban 60 + Kawneer Sys-3<br>Assembly U-0.39                                                                                                         |  |  |  |  |  |  |
| Vertical Glazing SHGC                                       | 0.4                                                                                                                                            | 0.38                                                                                                                                                   |  |  |  |  |  |  |
| Visual Light Transmission                                   | 0.9                                                                                                                                            | 0.7                                                                                                                                                    |  |  |  |  |  |  |
| Lighting and Equipment                                      | Baseline Case<br>(ASHRAE 90.1 2010)                                                                                                            | Design Case                                                                                                                                            |  |  |  |  |  |  |
| Lighting Power Calc Method                                  | Building Area Method                                                                                                                           | Building Area Method                                                                                                                                   |  |  |  |  |  |  |
| Lighting Power Density                                      | 0.99W/SF                                                                                                                                       | 0.63 W/SF                                                                                                                                              |  |  |  |  |  |  |
| Occupancy Sensor                                            | -                                                                                                                                              | Yes                                                                                                                                                    |  |  |  |  |  |  |
| Lighting Controls                                           | Included where required by ASHRAE 90.1 2013                                                                                                    | Daylight controls in perimeter Zones: Stepped<br>dimming to 70% and 35% of full power<br>Lighting controls as per Section 9.4.1 of<br>ASHRAE 90.1 2013 |  |  |  |  |  |  |
| Equipment Power Density                                     | Same as design                                                                                                                                 | Kitchen: 5 W/SF (incl appropriate diversity)<br>Servery: 4W/SF (incl appropriate diversity)<br>Office: 1.5 W/SF<br>Classroom: 0.75 W/SF                |  |  |  |  |  |  |



| HVAC - Air Side                    | Baseline Case<br>(ASHRAE 90.1 2010)                                                                                                                                                                                              | Design Case                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Primary HVAC Type                  | System #5: Packaged VAV with Reheat (DX/HW)                                                                                                                                                                                      | VAV with Reheat<br>Supplemental VRFs in spaces with full cooling<br>(FCUs)<br>Offices, specialty spaces, white box, library<br>and admin areas are being provided full<br>cooling. Other spaces will include humidity                                                                                                                                                        |  |  |  |
| Cooling Capacity / Efficiency      | Cooling equipment capacities auto-sized and<br>oversized by 15%.<br>Min DX Cooling Efficiency as per ASHRAE 90.1<br>2010<br>9.8-10.8 EER                                                                                         | control and heating when occupied.         Air cooled chiller in design         Unit: Total / Sensible MBH         AHU-1: 182.5/ 124.8 MBH         AHU-2: 179.9/74.1 MBH         AHU-3 (CC-1): 124.3/50.6 MBH         AHU-4: 339.4 /115.7 MBH         AHU-5: 82.3 / 41.3 MBH         AHU-6: 82.3 / 41.3 MBH         AHU-7: 274.1 / 122.1 MBH         AHU-8: 213.2 / 97.8 MBH |  |  |  |
| Heating Capacity / Efficiency      | Heating capacities auto-sized and oversized by 25%.<br>Heating source modeled as HW Plant with natural draft boilers.                                                                                                            | Heating source modeled as HW Plant with<br>boiler efficiency condensing boilers.<br>AHU-1: 144 MBH<br>AHU-2: 95 MBH<br>AHU-2: 95 MBH<br>AHU-3: 532.7 MBH<br>AHU-4: 112 MBH<br>AHU-4: 112 MBH<br>AHU-5: 55 MBH<br>AHU-6: 55 MBH<br>AHU-7: 202 MBH<br>AHU-8: 164 MBH                                                                                                           |  |  |  |
| Fan System Operation               | Variable volume fans, 30% min turn-down or<br>ventilation requirement, whichever is higher.<br>Supply and return fans operate continuously<br>whenever spaces are occupied and cycle to meet<br>loads during unoccupied periods. | Supply and return fans operate continuously<br>whenever spaces are occupied.<br>Perimeter FTR meets loads during unoccupied<br>periods.                                                                                                                                                                                                                                      |  |  |  |
| Supply Air                         | System design supply air flow rates based higher<br>of a supply-air-to-room-air temperature difference<br>of 20 degF, or min ventilation requirements.                                                                           | AHU-1: 12,000 CFM<br>AHU-2: 7,500 CFM<br>AHU-3: 5,500 CFM<br>AHU-4: 7,000 CFM<br>AHU-5: 3,500 CFM<br>AHU-6: 3,500 CFM<br>AHU-7: 13,000 CFM<br>AHU-8: 10,500 CFM                                                                                                                                                                                                              |  |  |  |
| Outdoor Air Design Min Ventilation | Same as design<br>Note: There is energy penalty from increased<br>ventilation under LEEDV4. This iteration of the<br>model assumes that the ventilation is in line with<br>ASHRAE 62.1 2010 minimum requirements.                | AHU-1: 5,000 CFM<br>AHU-2: 2,750 CFM<br>AHU-3: 5,500 CFM<br>AHU-4: 7,000 CFM<br>AHU-5: 3,500 CFM<br>AHU-6: 3,500 CFM<br>AHU-7: 13,000 CFM<br>AHU-7: 13,000 CFM                                                                                                                                                                                                               |  |  |  |



Т

www.greenengineer.com

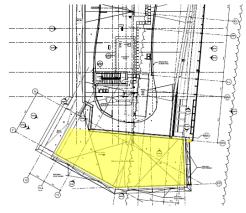
٦

| Economizer                                                                                                                                                                                                                                                                           | Economizer with high-limit shutoff of 70 deg F                                                                                                                                                      | Economizer mode when outside relative<br>humidity is less than return/ exhaust air relative<br>humidity and outside dew point is lower than<br>60F.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| System Fan Power                                                                                                                                                                                                                                                                     | As per ASHRAE 90.1 2010 Fan Allowance:<br>Supply: 0.9 W/CFM<br>Return: 0.5 W/CFM<br>Pressure credit: Fully ducted return/exhaust;<br>MERV 13 filter on OA; energy recovery; sound<br>attenuation.   | Supply / Exhaust / Total (W/CFM)<br>AHU-1: 1.48 / 0.74 W/CFM<br>AHU-2: 1.58 / 0.83 W/CFM<br>AHU-3: 0.91 W/CFM (Hood Exhaust)<br>AHU-4: 1.19 / 0.883 W/CFM<br>AHU-5: 1.24 / 0.762 W/CFM<br>AHU-6: 1.24 / 0.762 W/CFM<br>AHU-7: 1.36 / 0.876 W/CFM<br>AHU-8: 1.32 / 0.874 W/CFM                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Supply Air Temperature Reset Parameters                                                                                                                                                                                                                                              | The air temperature for cooling shall be reset<br>higher by 5F under minimum cooling load<br>conditions                                                                                             | Included identical to Baseline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| High Efficiency VAV Controls                                                                                                                                                                                                                                                         | NA                                                                                                                                                                                                  | VAV AHUs will static pressure reset control logic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| VAV Min Flow Ratio                                                                                                                                                                                                                                                                   | 30%                                                                                                                                                                                                 | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| ERV                                                                                                                                                                                                                                                                                  | 50% Recovery Effectiveness, where applicable                                                                                                                                                        | Enthalpy Wheel, 70% effective efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Exhaust Fans                                                                                                                                                                                                                                                                         | Modeled same as design                                                                                                                                                                              | KEF-1 Basement Grease Hood, 500-4,485<br>CFM, VFD control<br>KEF-2 Level-1 Grease Hood, 625-1900 CFM,<br>VFD control<br>EF 1-3 Mech Rm, Kitchen, Loading dock<br>general exhaust (3.1 W)<br>DEF-1 Basement Condensate Hood (0.33 W)                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| HVAC - Water Side                                                                                                                                                                                                                                                                    | Baseline Case                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| HVAC - Water Side                                                                                                                                                                                                                                                                    | Baseline Case<br>Two - Natural Draft Boilers<br>Thermal Efficiency: 80%                                                                                                                             | DEF-1 Basement Condensate Hood (0.33 W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                      | Two - Natural Draft Boilers                                                                                                                                                                         | DEF-1 Basement Condensate Hood (0.33 W) Design Case Three (3) 3,000 MBH input/2,760 MBH output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Number of Boilers                                                                                                                                                                                                                                                                    | Two - Natural Draft Boilers<br>Thermal Efficiency: 80%<br>Design HW Temp: 180 F                                                                                                                     | DEF-1 Basement Condensate Hood (0.33 W) Design Case Three (3) 3,000 MBH input/2,760 MBH output condensing boilers with an efficiency of 92% Design HW Temp: 140 F                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Number of Boilers<br>Hot Water Loop Temperatures                                                                                                                                                                                                                                     | Two - Natural Draft Boilers<br>Thermal Efficiency: 80%<br>Design HW Temp: 180 F<br>Loop Design DT: 50 F                                                                                             | DEF-1 Basement Condensate Hood (0.33 W)         Design Case         Three (3) 3,000 MBH input/2,760 MBH output condensing boilers with an efficiency of 92%         Design HW Temp: 140 F Loop Design DT: 30 F         Linear reset based on outside air temperature:                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Number of Boilers<br>Hot Water Loop Temperatures<br>HHW Loop Reset                                                                                                                                                                                                                   | Two - Natural Draft Boilers<br>Thermal Efficiency: 80%<br>Design HW Temp: 180 F<br>Loop Design DT: 50 F<br>180F @ 20F outdoor, 150F @ 50F outdoor                                                   | DEF-1 Basement Condensate Hood (0.33 W)         Design Case         Three (3) 3,000 MBH input/2,760 MBH output condensing boilers with an efficiency of 92%         Design HW Temp: 140 F Loop Design DT: 30 F         Linear reset based on outside air temperature: 140F @ ≤0F outdoor, 110F @ ≥60F outdoor         Three (3) boiler pumps @ 200 gpm, 1.45                                                                                                                                                                                                                                  |  |  |  |
| Number of Boilers<br>Hot Water Loop Temperatures<br>HHW Loop Reset<br>Primary HW pump parameters                                                                                                                                                                                     | Two - Natural Draft Boilers<br>Thermal Efficiency: 80%<br>Design HW Temp: 180 F<br>Loop Design DT: 50 F<br>180F @ 20F outdoor, 150F @ 50F outdoor<br>One @ 19W/gpm                                  | DEF-1 Basement Condensate Hood (0.33 W)         Design Case         Three (3) 3,000 MBH input/2,760 MBH output condensing boilers with an efficiency of 92%         Design HW Temp: 140 F Loop Design DT: 30 F         Linear reset based on outside air temperature: 140F @ ≤0F outdoor, 110F @ ≥60F outdoor         Three (3) boiler pumps @ 200 gpm, 1.45 BHP/2HP each, VFD         Three (3) HW loop pumps @ 200 gpm, 5.75                                                                                                                                                                |  |  |  |
| Number of Boilers         Hot Water Loop Temperatures         HHW Loop Reset         Primary HW pump parameters         Secondary HW pump parameters                                                                                                                                 | Two - Natural Draft Boilers<br>Thermal Efficiency: 80%<br>Design HW Temp: 180 F<br>Loop Design DT: 50 F<br>180F @ 20F outdoor, 150F @ 50F outdoor<br>One @ 19W/gpm<br>NA                            | DEF-1 Basement Condensate Hood (0.33 W)         Design Case         Three (3) 3,000 MBH input/2,760 MBH output condensing boilers with an efficiency of 92%         Design HW Temp: 140 F         Loop Design DT: 30 F         Linear reset based on outside air temperature: 140F @ ≤0F outdoor, 110F @ ≥60F outdoor         Three (3) boiler pumps @ 200 gpm, 1.45         BHP/2HP each, VFD         Three (3) HW loop pumps @ 200 gpm, 5.75         BHP/7.5 HP each, VFD                                                                                                                   |  |  |  |
| Number of Boilers         Hot Water Loop Temperatures         HHW Loop Reset         Primary HW pump parameters         Secondary HW pump parameters         Pump Speed Control                                                                                                      | Two - Natural Draft Boilers<br>Thermal Efficiency: 80%<br>Design HW Temp: 180 F<br>Loop Design DT: 50 F<br>180F @ 20F outdoor, 150F @ 50F outdoor<br>One @ 19W/gpm<br>NA<br>VSD on Pumps            | DEF-1 Basement Condensate Hood (0.33 W)         Design Case         Three (3) 3,000 MBH input/2,760 MBH output condensing boilers with an efficiency of 92%         Design HW Temp: 140 F Loop Design DT: 30 F         Linear reset based on outside air temperature: 140F @ ≤0F outdoor, 110F @ ≥60F outdoor         Three (3) boiler pumps @ 200 gpm, 1.45 BHP/2HP each, VFD         Three (3) HW loop pumps @ 200 gpm, 5.75 BHP/7.5 HP each, VFD         VSD on Pumps         One 150-ton air-cooled scroll chiller with 9.912                                                             |  |  |  |
| Number of Boilers         Hot Water Loop Temperatures         HHW Loop Reset         Primary HW pump parameters         Secondary HW pump parameters         Pump Speed Control         Number of Chillers         Chilled Water Supply Loop Temp         Chilled Water Loop Delta T | Two - Natural Draft Boilers<br>Thermal Efficiency: 80%<br>Design HW Temp: 180 F<br>Loop Design DT: 50 F<br>180F @ 20F outdoor, 150F @ 50F outdoor<br>One @ 19W/gpm<br>NA<br>VSD on Pumps<br>NA      | DEF-1 Basement Condensate Hood (0.33 W)         Design Case         Three (3) 3,000 MBH input/2,760 MBH output condensing boilers with an efficiency of 92%         Design HW Temp: 140 F         Loop Design DT: 30 F         Linear reset based on outside air temperature: 140F @ ≤0F outdoor, 110F @ ≥60F outdoor         Three (3) boiler pumps @ 200 gpm, 1.45         BHP/2HP each, VFD         Three (3) HW loop pumps @ 200 gpm, 5.75         BHP/7.5 HP each, VFD         VSD on Pumps         One 150-ton air-cooled scroll chiller with 9.912         EER /16.66 IPLV             |  |  |  |
| Number of Boilers         Hot Water Loop Temperatures         HHW Loop Reset         Primary HW pump parameters         Secondary HW pump parameters         Pump Speed Control         Number of Chillers         Chilled Water Supply Loop Temp                                    | Two - Natural Draft Boilers<br>Thermal Efficiency: 80%<br>Design HW Temp: 180 F<br>Loop Design DT: 50 F<br>180F @ 20F outdoor, 150F @ 50F outdoor<br>One @ 19W/gpm<br>NA<br>VSD on Pumps<br>NA<br>- | DEF-1 Basement Condensate Hood (0.33 W)         Design Case         Three (3) 3,000 MBH input/2,760 MBH output condensing boilers with an efficiency of 92%         Design HW Temp: 140 F         Loop Design DT: 30 F         Linear reset based on outside air temperature: 140F @ ≤0F outdoor, 110F @ ≥60F outdoor         Three (3) boiler pumps @ 200 gpm, 1.45         BHP/2HP each, VFD         Three (3) HW loop pumps @ 200 gpm, 5.75         BHP/7.5 HP each, VFD         VSD on Pumps         One 150-ton air-cooled scroll chiller with 9.912         EER /16.66 IPLV         42F |  |  |  |



www.greenengineer.com

| Number of Cooling Towers / Fluid Coolers | NA                                                   | NA                                                                              |  |  |  |
|------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|
| Domestic Hot Water                       | Baseline Case                                        | Design Case                                                                     |  |  |  |
| DHW System Type                          | Two (2) Gas Storage Water Heaters                    | Two (2) Gas Storage Water Heaters DWH-1 &2<br>Basis of Design: Lochnivar SIT119 |  |  |  |
| Storage capacity                         | Same as design                                       | 119 Gallons each                                                                |  |  |  |
| Equipment Efficiency & Temp Controls     | 80% Et                                               | 92% Et                                                                          |  |  |  |
| DHW Flow                                 | 0.44 gpm<br>(preliminary estimate based on LEED WEp) | 0.39 gpm<br>(preliminary estimate based on LEED WEp)                            |  |  |  |




## APPENDIX-B: PHOTOVOLTAIC ANALYSIS

The project will include rooftop photovoltaic (PV) arrays to offset electricity use. The roof area available for installing PV panels is currently estimated at 3,065 SF.

If panels were installed on the available portions of the roof, a 27 pkW PV system could be installed. This system would generate an estimated 34,873 kWh of electricity per year. The value of the electricity generated would be approximately \$5,475 per year based on an electric rate of 0.157/kWh.

The installed cost of the system is estimated at \$94,691. Installation cost estimates do not include any tax or other incentives.



Roof Area Available for On-site PV

#### Assumptions:

Assumed PV performance: Estimated installation cost: Electric utility rate: Available roof space after setbacks: Estimated coverage of available space: Panel Tilt: Panel Orientation: 15.4 watts (peak)/sf
\$3.50/Watt (Peak), excl. any taxes or incentives
\$0.157/ kWh
85%
50% (to avoid self-shading)
42-degrees to the horizontal
180 degrees i.e. facing south

Table-1: Rooftop PV Summary

| Cypress Building: On Site PV Estimate |           |                         |                          |            |         |       |                      |                 |  |  |
|---------------------------------------|-----------|-------------------------|--------------------------|------------|---------|-------|----------------------|-----------------|--|--|
| Panel Orientation                     | Roof Area | Net Roof Area<br>for PV | PV Panel<br>Surface Area | Array Size | Azimuth | Tilt  | Annual<br>Production | Annual<br>Value |  |  |
|                                       | SF        | SF                      | SF                       | kW         | (Deg)   | (Deg) | kWh/yr               | (\$)            |  |  |
| 42 Degree Panel Tilt                  | 3,065     | 2,605                   | 1,759                    | 27         | 180     | 42    | 34,873               | \$ 5,475        |  |  |

-END OF REPORT-